1. **PRODUCT DESCRIPTION**

Collagenase HA GMP Grade (HA) is an aseptically filled, lyophilized mixture of 60% (w/w) purified Class I (C1) and 40% (w/w) purified Class II (C2) collagenases from *Clostridium histolyticum*. The lyophilized cake/powder consists of the blended mixture in the presence of low concentration of biological buffer salts sealed under vacuum in an amber glass vial.

2. **APPLICATION**

HA is formulated to contain a sufficient amount of collagen degradation activity (CDA) units for the isolation of islets from average sized donor human pancreata. Islets from deceased donors and chronic pancreatitis organs have been successfully isolated using this collagenase formulation. Collagenase HA is a highly purified collagenase product and contains negligible quantities other proteolytic activities. The product must therefore be supplemented with sufficient neutral protease to successfully release islets from the extracellular matrix. Both Animal Free Thermolysin and BP Protease have been shown to be successful in islet isolations. In addition, *C. histolyticum* neutral protease has also been successfully used.

3. **STORAGE & STABILITY**

This product is stable for at least two years from date of manufacture if stored unopened between -15 to -25°C. Internal studies have shown the reconstituted enzyme is stable as a frozen solution between -15 to -25°C for at least one year as long as no other protease enzymes had been added to the solution. Additional studies have shown the reconstituted collagenase was successfully frozen and thawed three times as a concentrated or dilute solution without apparent loss of potency as assessed by the CDA assay. The product is shipped on dry ice to provide the most stable conditions during shipment.

4. **PRODUCT USE**

4.1. **Enzyme Reconstitution**

Reconstitute the lyophilized enzyme with 20 mL of cold water on ice for a minimum of 30 minutes to ensure complete dissolution of the enzyme. Occasionally invert the vial to aid in the dissolution process. The enzyme solution should not be vortexed or swirled excessively as enzyme denaturation may occur. Failure to allow the enzyme to completely rehydrate will affect the enzyme potency and could negatively impact the success of the tissue dissociation procedure. The enzyme is lyophilized in a buffer containing calcium so the initial reconstitution has sufficient calcium for enzyme stability. However, for optimal stability the final working buffer for tissue dissociation should have at least 0.1 mM Ca$^{2+}$.

4.2. **Digestion Solution Preparation**

Once completely in solution, the collagenase must be combined with a neutral protease and diluted to the appropriate volume for use in a specific tissue dissociation procedure. The collagenase may be degraded by neutral protease. To minimize this problem, the enzymes should be mixed just prior to beginning the digestion. At most, the mixture can be stored for two hours between 2°C and 6°C prior to use. This enzyme solution can be sterile filtered through 0.2 μm cellulose acetate or PES filter membranes without compromising enzyme potency. Surfactant free cellulose acetate (SFCA) and PES filters from several major vendors were tested and no measurable loss of CDA was observed.
digestion solution is suitable for use in most human islet isolation protocols adapted from the Ricordi method3,4.

4.3. Digestion Optimization

The recommendations made in this product insert represent the best guidance available based on experiences from product development activities and observations shared by users. Individual results may vary and some optimization may be required to achieve the desired outcome. Moderate adjustments to the enzyme concentration can be made with the goal of improving islet yield or minimize cell damage leading to low viability. Other factors that can be adjusted include digestion time and the mechanical contribution by digestion chamber shaking during digestion. Contact VitaCyte to discuss specific problems or optimization strategies.

5. TROUBLESHOOTING

5.1. Many factors contribute to the successful isolation of cells from tissue and inadvertent oversight to any of these conditions may drastically reduce the yield and viability of target cell population. While far from a complete list, the guidance below may help identify commonly encountered problems. Contact VitaCyte if this guidance does not help resolve specific issues.

5.2. Prolonged or Incomplete Digestion may be caused by:
 - Loss of enzyme potency (activity)
 - Incomplete enzyme rehydration during reconstitution
 - Inappropriate enzyme dilution
 - Presence of enzyme inhibitors
 - Low incubation temperature
 - Inefficient digestion solution perfusion

5.3. Low Yield and/or Cell Viability
 - Prolonged organ warm ischemia time
 - Aggressive mechanical disruption
 - Extended incubation time
 - Elevated incubation temperature
 - Inappropriate enzyme dilution
 - Ineffective density gradient purification

6. ADDITIONAL INFORMATION

6.1. Intended Use & Regulatory

HA is for ex-vivo use only to recover cells from tissue. Guidance for use of reagents in clinical cell transplantation procedures is governed by local Institutional Review Boards and regional Health Authorities. HA is manufactured in accordance with the principles for clinical trial material outlined in Guidance Document Q7 Good Manufacturing Practice Guidance for Active Pharmaceutical Ingredients published by the FDA and ICH in September 2016. This product is labeled as ‘GMP Grade’ to indicate
the quality system and manufacturing facility are consistent with requirements set forth in the above document. Guidance for the qualification and acceptance of reagents used in cell therapy applications can be found in the USP General Chapter <1043> Ancillary Materials for Cell, Gene, and Tissue-Engineered Products. Further details can be found on the VitaCyte Commitment to Quality document available upon request.

6.2. Animal Origin

No bovine derived animal products are used in any step of manufacturing of HA. This product is purified from culture supernatants of C. histolyticum that contain porcine gelatin and pancreatic enzymes derived from US and Canadian sources.

6.3. Manufacturing Summary

Enzymes are purified from the culture supernatants results from the fermentation of native organisms. The purification processes use standard protein column chromatography and tangential flow filtration concentration and diafiltration techniques. The purification processes have been optimized to yield the highest purity attainable for each enzyme while minimizing undefined and contaminating protease activities. In particular this process ensures that a negligible amount of trypsin like activity (i.e., contaminating clostripain) is present in the final product. After characterization, the purified collagenases are sterile filtered in a qualified biosafety cabinet and aseptically dispensed into amber bottles on activity units, lyophilized, sealed under vacuum then secured and labeled. The final lyophilized product is then further characterized to confirm each batch meets established specification ranges.

6.4. Activity Assessment

VitaCyte relies on several biochemical tools to characterize and ensure the consistency of HA. The Pz-peptide substrate (Wünsch Assay) has historically been used to characterize collagenase activity⁶. While this assay has advantages in terms of reproducibility and historical precedence, it also has several limitations. The Wünsch Assay is strongly biased towards C2 and is not sensitive to the different molecular forms of C1. In addition, the substrate assesses the catalytic activity of the enzyme and does not assess the ability of collagenases to degrade native collagen. Degraded collagenases lacking a collagen binding domain are able to cleave the Pz-peptide substrate, but are not functional in degrading native collagen. The Pz-peptide activity provides potentially misleading information about the ability of collagenase to isolation islets. The limitations of the Wünsch assay led to the development a fluorescent microplate CDA using fluorecein isothiocyanate labeled calf skin collagen fibrils as substrate⁷. The intact molecular form of purified C1 with two collagen binding domains (~116kDa) has approximately 10-fold higher CDA when compared the CDA found with same amount of purified C1 containing only one collagen binding domain (~100kDa) or intact C2 (~114kDa).

6.5. Additional Considerations

In addition to the quality of the dissociation enzymes, additional factors impact the outcome of success of human islet isolations⁸,⁹ including: the quality of the organ and experience of the islet isolation team. The team needs to assess many variables that affect islet recovery. These include but are not limited to the characteristics of the donor, transport of the organ, the tissue dissociation procedure, islet purification procedure, and assessment and subsequent culture of the islets¹⁰.
6.6. Resources & Support

Further details on manufacturing, quality control testing and use of products are available at www.vitacyte.com or technical support at 317-917-3457.

6.7. References

